
Association between variables





Correlation 

• Correlation is used to measure the degree of linear association between two 
continuous variables



Scatter Plot 

• A 2-dimensional scatter diagram

• Visualises the relationship between 2 variables

• 𝑥 → horizontal axis

• y → vertical axis

• Plots the points of all individuals in a sample (n)

• The most appropriate approximation to the observed relationship between 𝑥 and y

• If a straight line can be drawn through the midst of the points → linear relationship
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Correlation coefficient 

• The strength of the association is summarised by the correlation coefficient.

• Measures how close the observations are to the straight line that best describes their linear 
relationship

• There are two main types of correlation coefficients:

• Pearson’s correlation coefficient (𝒓)

• relies on assumptions of Normality of the data

• Spearman’s rank correlation coefficient (𝒓𝒔)

• Non-parametric alternative 

• Uses:

• if data are not approximately normally distributed (x and y)

• have extreme values (outliers)

• the sample size is small

• At least one of the variables is measured on an ordinal scale



Correlation coefficient 

• The correlation coefficient (𝒓) can take any value in the range -1 to +1. 

• The sign of the correlation coefficient indicates the direction (+/−): 

• + one variable increases as the other variable increases (positive 𝒓) 

• − one variable decreases as the other increases (negative 𝒓) 

• The magnitude of the correlation coefficient indicates the strength of the linear association. 

• If 𝒓 = +1 or −1 → Perfect correlation! 

• If 𝒓 = 0 → No linear correlation.

• The closer 𝒓 is to -1 or +1, the greater the degree of linear association.



Examples
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Weak positive Weak negative



When not to calculate r?

• When there is a non-linear relationship between two variables 

• When outliers are present 
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When not to calculate r?

• Data comprise subgroups of individuals for which the mean level of observations on at least 
one of the variables are different 

• The data include more than one observation for each individual
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Correlation between two variables does not necessarily imply a ‘cause and effect’ 

relationship. 



Example in R



Example in R

Age (x)

?PSA (y)

logPSA (y)



Example in R



Example in R



Regression

• Regression looks for the dependence of one variable (the dependant variable - 𝑦) on 
another (the independent - 𝑥) variable. 

• It quantifies the best linear relation between the variables and allows the prediction of the 
dependent variable when the independent variable is known.

• Linear regression is used to determine the linear line (the regression of 𝑦 on 𝑥) that best 
describes the straight-line relationship between the two continuous variables.

• Logistic regression is used when the outcome variable is binary as opposed to continuous.



Linear regression

• The equation which estimates the simple linear regression line: 

   𝑌 = 𝑎 + 𝑏𝑥

• 𝒙 → independent, predictor or explanatory variable

• 𝒀 → dependent, outcome or response variable

• For a given value of 𝑥, 𝑌 is the value of 𝑦 which lies on the estimated line. It is an estimate of 
the value we expect for 𝑦 if the value of 𝑥 is known. 

• 𝒀 is called “the fitted” value of 𝑦.

• 𝒂 → intercept of the estimated line; it is the average value of 𝑌 when 𝑥 = 0 

• 𝒃 → slope/ gradient of the estimated line; it represents the amount by which 𝑌 increases on 
average if we increase 𝑥 by one unit. 
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Linear regression

• The residual is the difference between the actual response y and the predicted response Y 
from the regression line. 

• The intercept and slope are determined by the method of least squares (often called 
ordinary least squares, OLS). 

• This method determines the line of best fit so that the sum of the squared residuals is at a 
minimum. 

• The residuals are assumed to be Normally distributed and to have an average value of zero.

Hb



Regression coefficients 

• The intercept (𝑎) and the slope (𝑏) are called “regression coefficients” of the estimated line. 
(often used for 𝑏)

Intercept 

• The average value of the response when the predictor is 0.

Slope 

• The average change in the response when the predictor increases by 1 unit.

• If the predictor was a binary variable the slope (𝑏) would indicate the average difference in 
response between the two groups.



Confidence Intervals (CI)

• The intercept (𝑎) and the slope (𝑏) are sample estimates of corresponding population 
parameters. 

• These estimates have an inherent variability which is used to provide 95% confidence 
intervals for where the true population parameters may lie. 

• The interval for the slope indicates the range, for the wider population, that the change in 
the response is likely to lie between as the predictor increases by 1 unit. 

• If this interval includes 0, the coefficient is not statistically different from 0.

P-value

• Each coefficient has a p-value. 

• The p-value relates to a test of the null hypothesis that the coefficient = 0, versus the 
alternative hypothesis that the coefficient ≠ 0. 

• If p > 0.05 the null hypothesis cannot be discounted.



R-squared 

• We can assess how well the line fits the data by calculating the “coefficient of 
determination” R squared (R2)

• Usually expressed as a percentage ranging from 0 - 100%, which is equal to the square of 
the correlation coefficient. 

• This represents the percentage of the variability of the response that can be explained by 
the predictor. 

• The higher the R-squared, the better the model.



Example – Simple Linear Regression

model lm (y ~ x, data = data)

model lm (lweight ~ age, data = PSAProstateCancer_df)



Assumptions of  linear regression

1. Linearity - The relationship between the response and predictor is approximately linear. 

2. Independence - The observations in the sample are independent. 

3. Normality - The distribution of residuals is Normal. 

4. Homoscedasticity - The residuals have constant variance.

• Assumptions can be checked by examining plots of the residuals. 

• The most common method is to plot the residuals against the fitted values. 

• This plot can show systematic deviations from a linear relationship and highlight non-constant 
variance. 

• A Normal probability plot or histogram can be used to assess the Normality assumption of 
residuals.



• A linear relationship means that across the range of fitted values, the residuals are spread 
equally above and below 0. Figure (a)

• The assumption does not hold in Figure (b)

• Constant variance of the residuals means that in a plot of residuals against fitted values, the 
spread of the residuals doesn’t change. Figure (a)

• The assumption does not hold if the vertical spread of the residuals changes across the plot as 
in Figure (c)



Model diagnostics



Linearity 

• Ideally, the residual plot will show no fitted pattern. That is, the red line should be approximately horizontal 

at zero. The presence of a pattern may indicate a problem with some aspect of the linear model.

• In our example, there is no pattern in the residual plot. This suggests that we can assume linear 

relationship between the predictor and the outcome variables.

• Note that, if the residual plot indicates a non-linear relationship in the data, then a simple approach is to 

use non-linear transformations of the predictors, such as log(x), sqrt(x) and x^2, in the regression model.



Normality of  residuals 

• The QQ plot of residuals can be used to visually check the normality assumption. 

• The normal probability plot of residuals should approximately follow a straight line.

• In our example, all the points fall approximately along this reference line, so we can assume normality.



Homoscedasticity (Homogeneity of  variance)

• This assumption can be checked by examining the scale-location plot, also known as the spread-location 

plot.

• This plot shows if residuals are spread equally along the ranges of predictors. It’s good if you see a 

horizontal line with equally spread points.



Outliers

• The plot above highlights the top 3 most extreme points (#3, #70 and #94), with a standardized residuals 

below -2 and above +2. 

• However, there is no outliers that exceed 3 standard deviations, which is good.



Multiple Linear Regression

• Multiple linear regression is an extension of simple linear regression. 

• Used to predict a response using several predictor variables. 

• The assumptions of multiple linear regression are the same as those for simple linear 
regression. 

Example in R

model lm (y ~ x1 + x2 + x3 + x4, data = data)

model lm (lweight ~ age + lpsa + lbph + gleason,  data = PSAProstateCancer_df)



• Interpretation:

• The intercept (a) is the average value of the response when all the predictors have 
values equal to zero. 

• If a predictor is continuous, it’s slope (b) indicates the average change in the response 
when all the other predictors are held constant. 

• If a predictor is binary the slope (b) represents the average difference in the response 
between the groups when all other predictors are held constant. 

• In multivariable the adjusted R2 is employed to assess the fit of the model. 

• The adjusted R2 takes account of the number of predictors used in the model.

• Its interpretation is the same as for R-squared. 



Example – Multiple Linear Regression



Logistic Regression

• Logistic regression is similar to linear regression

• Used to predict a binary outcome of interest 

• Simple logistic regression – One predictor

• Multiple logistic regression – Several predictors

Example in R

model glm (y ~ x1 + x2, data = data, family = binomial)

model glm (lweight ~ age + sex,  data = Melanoma_df, , family = binomial)



Example in R









A. Is always positive.

B. Is dimensionless.

C. Takes the same value when the variables x and y are interchanged.

D. Takes the value zero when there is no linear association between the two variables x and y.

E. Takes the value + 1 when one variable increases as the other variable decreases in value, 

and it is possible to draw a straight line on the scatter diagram with all the points lying on it.

Select all of the following statements which you believe to be true.

Q1. The Pearson correlation coefficient between two variables, x and y:



A. There is substantial evidence that systolic blood pressure and age in these women are 

linearly related.

B. 72% of the variability of systolic blood pressure in these women can be explained by its 

linear relationship with age.

C. 48% of the variability of systolic blood pressure in these women is unexplained by its linear 

relationship with age.

D. We can conclude that increasing age is a cause of rising systolic blood pressure in these 

women.

E. The null hypothesis that has been tested is that there is no association between systolic 

blood pressure and age in these women.

Q2. Interpretation of Pearson's correlation coefficient

The estimated Pearson correlation coefficient between systolic blood pressure (mmHg) and age 

(years) in a sample of 30 middle-aged women from a given community was r = 0.72 (P < 0.001). 
Hence r2 = 0.52. 



A. Spearman's correlation coefficient was used for these data because both variables were Normally distributed.

B. We can conclude that there is a linear relationship between the duration of sobriety as assessed by the 

subject and their collateral source.

C. If the authors had taken a larger sample size, they would have been able to calculate the Pearson's 

correlation coefficient for these data.

D. Spearman's correlation has provided a measure of association between the HRAR scores as assessed by the 

subject and their collateral source.

E. We can conclude that 92.2% (=0.96 x 0.96) of the variability in the duration of sobriety as assessed by the 

subject can be 'explained' by the variability in the duration of sobriety as assessed by their collateral sources.

Q3. Spearman's correlation coefficient

50 subjects with alcoholic cirrhosis underwent an interview to assess the reliability and validity of historical variables 

such as duration of sobriety, duration and quantity of drinking and treatment history on the assessment of an 

individual's alcohol history. In addition, an alternative source close to each subject, usually a spouse, was 

interviewed by a second interviewer, who was blind to the subject's alcoholism history. 

Duration of sobriety correlated highly between subject and the alternative source (Spearman's r = 0.96, P = 0.0001) 
as did the individual's score on the High-risk Alcoholism Relapse Scale (HRAR, Spearman's r = 0.72, P = 0.0001).



A. The same as the gradient of the line.

B. The value of Y when x = 0, where Y is the predicted value of y.

C. The average change in Y for a unit increase in x.

D. Always positive.

E. Often called the regression coefficient.

Q4. The slope of the linear regression line between an explanatory variable, x, 
and a dependent variable, y, is:



• Introduction to Medical Statistics - The Beatson West of Scotland Cancer Centre

• Medical Statistics at a Glance – Petrie & Sabin 3rd Ed 2009 (Wiley-Blackwell)

• Medical Statistics at a Glance – WORKBOOK (Quiz) 

https://books.wiley.com/titles/9781119167815/multiple-choice-questions/ 

• Examples: OneDataSets package in R 

https://cran.r-project.org/web/packages/OncoDataSets/OncoDataSets.pdf 
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