Association between variables
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3.5 Association = Interpret the meaning of correlation and regression
between variables analysis

= |Interpret the meaning of scatter plots




Correlation

« Correlation is used to measure the degree of linear association between two
continuous variables

white blood cells

20 20
o @
15 15
1+ ] o
= @ ° o @ ©
° gﬂ o P o ° o 2 o ng:g: @
o]
10 o % o0 @ ° 0, o » 10 . @ ® 3o
o agc:’ﬁﬂ o o o o %Ganﬁp o,
o ol o o o o
5 ] o S{)n ﬂg% @ 5 Gu‘:‘?
o o [ +] @ B
o o
Q 0
a 100 200 300 400 500 z 4 B B 10 12

platelets MNeutrophils



Scatter Plot

A 2-dimensional scatter diagram

Visualises the relationship between 2 variables
* x = horizontal axis
« vy = vertical axis

Plots the points of all individuals in a sample (n)

The most appropriate approximation to the observed relationship between x and y

If a straight line can be drawn through the midst of the points - linear relationship



Correlation coefficient

« The strength of the association is summarised by the correlation coefficient.

« Measures how close the observations are to the straight line that best describes their linear
relationship

« There are two main types of correlation coefficients:
« Pearson’s correlation coefficient (r)
» relies on assumptions of Normality of the data

« Spearman’s rank correlation coefficient (r)
« Non-parametric alternative
« Uses:
 if data are not approximately normally distributed (x and vy)
* have extreme values (outliers)
« the sample size is small
« Afleast one of the variables is measured on an ordinal scale



Correlation coefficient

« The correlation coefficient (r) can take any value in the range -1 to +1.

« The sign of the correlation coefficient indicates the direction (+/-):
« + one variable increases as the other variable increases (positive r)

« — one variable decreases as the other increases (negative r)

« The magnitude of the correlation coefficient indicates the strength of the linear association.
« Ifr=+1or-1-> Perfect correlation!
* If r =0 -> No linear correlation.
 The closerristo -1 or +1, the greater the degree of linear association.
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When not to calculate r?

« When there is a non-linear relationship between two variables
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« When outliers are present




When not to calculate r?

« Data comprise subgroups of individuals for which the mean level of observations on at least
one of the variables are different

 The data include more than one observation for each individual



Correlation between two variables does not necessarily imply a ‘cause and effect’
relationship.




°
Exa m p l eimn R PSAProstateCancer_df  Factors associated with prostate specific antigen

Description

This dataset, PSAProstateCancer_df, 1s a data frame containing data from a study by Stamey et
al. (1989) to examine the association between prostate specific antigen (PSA) and several clinical
measures in men about to receive a radical prostatectomy. The dataset includes 97 observations and
O variables, each representing a factor potentially associated with PSA.

Usage

data(PSAProstateCancer_df)

Format

A data frame with 97 observations and 9 variables:

lcavol Logarithm of cancer volume (numeric).

Iweight Logarithm of prostate weight (numeric).

age Age of the patient in years (integer).

Ibph Logarithm of benign prostatic hyperplasia (numeric).
svi Seminal vesicle invasion (integer).

lep Logarithm of cancer perineural invasion (numeric).
gleason Gleason score (integer).

pged5 Percentage of cancerous tissue with Gleason score 4 or 5 (integer).

Ipsa Logarithm of prostate specific antigen (PSA) (numeric).




Examplein R
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# Histogram for Age
PSAProstateCancer_df |>
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Examplein R

40 50 60 70 80
age

# Scatter plot (Age vs. log PSA)

PSAProstateCancer df |>
geplot(aes(x = age, y = lpsa)) +
geom_point() +
geom_smooth(method = 1m)

> # Correlation
> cor.test(PSAProstateCancer df%age, PSAProstateCancer_df$lpsa)

Pearson's product-moment correlation

data: PSAProstateCancer_df%age and PSAProstateCancer_df$lpsa
t = 1.6773, df = 95, p-value = 0.09677
alternative hypothesis: true correlation is not equal to ©
95 percent confidence interwval:
-0.8388976 ©.3569640
sample estimates:
cor
0.1695928



psa

Examplein R

L
200-
L
100~ ¢
L
L 1 *
e® o %,0,,
[ ] [ ]
0- [ ] ¢ o [ b ...:'.="'!.'.=.
40 50 60 70
age
# Scatter plot (Age vs. PSA)
PSAProstateCancer df |>
geplot(aes(x = age, yv = psa)) +

geom_point() +
geom_smooth(method = 1m)

80

> # Correlation
> cor.test(PSAProstateCancer_df%age, PSAProstateCancer_df$%psa)

Pearson's product-moment correlation

data: PSAProstateCancer_df$age and PSAProstateCancer_df$psa
t = ©.16088, df = 95, p-value = ©.8725
alternative hypothesis: true correlation is not equal to ©
95 percent confidence interval:
-@.183545%7 ©.2152486
sample estimates:
cor
P.9165838

> cor.test(PSAProstateCancer_df$%$age, PSAProstateCancer_df$psa,
method = "spearman™)

Spearman's rank correlation rho

data: PSAProstateCancer_df$age and PSAProstateCancer_df$psa
S = 119372, p-value = 8.83431
alternative hypothesis: true rho is not equal to ©

sample estimates:
rho
B.2151562



Regression

« Regression looks for the dependence of one variable (the dependant variable - y) on
another (the independent - x) variable.

|t quantifies the best linear relation between the variables and allows the prediction of the
dependent variable when the independent variable is known.

« Linear regression is used to determine the linear line (the regression of y on x) that best
describes the straight-line relationship between the two continuous variables.

« Logistic regression is used when the outcome variable is binary as opposed to continuous.



Linear regression

The equation which estimates the simple linear regression line:

Y =a+ bx

x =2 independent, predictor or explanatory variable

Y 2 dependent, outcome or response variable

For a given value of x, Y is the value of y which lies on the estimated line. It is an estimate of
the value we expect for y if the value of x is known.

Y is called “the fitted” value of y.

a =2 intercept of the estimated line; it is the average value of Y when x =0

b - slope/ gradient of the estimated line; it represents the amount by which Y increases on
average if we increase x by one unit.

v



Linear regression

« The residual is the difference between the actual response y and the predicted response Y
from the regression line.

« The intercept and slope are determined by the method of least squares (often called
ordinary least squares, OLS).

« This method determines the line of best fit so that the sum of the squared residuals is at a
minimum.

« The residuals are assumed to be Normally distributed and to have an average value of zero.
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Regression coefficients

« The intercept (a) and the slope (b) are called “regression coefficients” of the estimated line.
(often used for b)

Intercept
« The average value of the response when the predictor is 0.

Slope
« The average change in the response when the predictor increases by 1 unit.

 If the predictor was a binary variable the slope (b) would indicate the average difference in
response between the two groups.



Confidence Intervals (Cl)

« The intercept (a) and the slope (b) are sample estimates of corresponding population
parameters.

« These estimates have an inherent variability which is used to provide 95% confidence
intervals for where the true population parameters may lie.

« The interval for the slope indicates the range, for the wider population, that the change in
the response is likely to lie between as the predictor increases by 1 unit.

 If this interval includes 0, the coefficient is not statistically different from O.

P-value

« Each coefficient has a p-value.

« The p-value relates to a test of the null hypothesis that the coefficient = 0, versus the
alternative hypothesis that the coefficient # 0.

« If p>0.05the null hypothesis cannot be discounted.



R-squared

« We can assess how well the line fits the data by calculating the “coefficient of
determination” R squared (R?)

« Usually expressed as a percentage ranging from 0 - 100%, which is equal to the square of
the correlation coefficient.

« This represents the percentage of the variability of the response that can be explained by
the predictor.

« The higher the R-squared, the better the model.



Example — Simple Linear Regression

model—Im (y ~ x, data = data)

model—Im (lweight ~ age, data = PSAProstateCancer_df)

> # Simple Linear regression
> model <- 1Im(lweight ~ age, data = PSAProstateCancer_df)

4- > summary(model)
%% Call:
= Im{formula = lweight ~ age, data = PSAProstateCancer_df)

Residuals:
Min 1Q Median 30 Max
-1.25672 -8.19186 -0.08317 0.259160 1.686648

Coefficients:
40 50 60 70 80 Estimate Std. Error t value Pr(>|t])

age (Intercept) 2.350152 B.355854 6.604 2. 20e-p09 **=
age |@.BEBBE3 | B.885535 3.613'@.@9@4?9 o E

Signif. codes: @ “**%%' 9. g1 **’ g.01 ¥’ ©.05 .7 0.1 * * 1

Residual standard error: 6.4037 on 95 degrees of freedom
|Mu1tiple R-squared: @.1211, Adjusted R-squared: .1118
F-statistic: 12.89 on 1 and 95 DF, p-value: 0.0004786




Assumptions of linear regression

1. Linearity - The relationship between the response and predictor is approximately linear.
2. Independence - The observations in the sample are independent.
3. Normality - The distribution of residuals is Normal.

4. Homoscedasticity - The residuals have constant variance.

Assumptions can be checked by examining plots of the residuals.

The most common method is to plot the residuals against the fitted values.

This. plot can show systematic deviations from a linear relationship and highlight non-constant
variance.

A Normal probability plot or histogram can be used to assess the Normality assumption of
residuals.



residuals

(al

Fitted values

A linear relationship means that across the range of fitted values, the residuals are spread

Attedvalues

equally above and below 0. Figure (a)

The assumption does not hold in Figure (b)

Constant variance of the residuals means that in a plot of residuals against fitted values, the

spread of the residuals doesn’t change. Figure (a)

The assumption does not hold if the verfical spread of the residuals changes across the plot as

in Figure (c)

Fttedvalues



Model diagnostics

Model diagnostics

par(mfrow = c(2, 2)) S
plot(model) E
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Linearity

Residuals vs Fitted
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« |deally, the residual plot will show no fitted pattern. That is, the red line should be approximately horizontal
at zero. The presence of a pattern may indicate a problem with some aspect of the linear model.

* In our example, there is no pattern in the residual plot. This suggests that we can assume linear
relationship between the predictor and the outcome variables.

« Note that, if the residual plot indicates a non-linear relationship in the data, then a simple approach is to
use non-linear transformations of the predictors, such as log(x), sart(x) and xA2, in the regression model.



Normality of residuals

Q-Q Residuals

# Q-Q plot
plot(model, 2)

Standardized residuals

Theoretical Quantiles
Im(lweight ~ age)

« The QQ plot of residuals can be used to visually check the normality assumption.
« The normal probability plot of residuals should approximately follow a straight line.

* Inour example, all the points fall approximately along this reference line, so we can assume normality.



Homoscedasticity (Homogeneity of variance)

Scale-Location
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« This assumption can be checked by examining the scale-location plot, also known as the spread-location
plof.

» This plot shows if residuals are spread equally along the ranges of predictors. It's good if you see a
horizontal line with equally spread points.



Outliers

Residuals vs Leverage
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« The plot above highlights the top 3 most extreme points (#3, #70 and #94), with a standardized residuals
below -2 and above +2.

« However, there is no outliers that exceed 3 standard deviations, which is good.



Multiple Linear Regression

« Multiple linear regression is an extension of simple linear regression.
« Used to predict a response using several predictor variables.

« The assumptions of multiple linear regression are the same as those for simple linear
regression.

Example in R

model—Im (y ~ x1 + x2 + x3 + x4, data = data)

model— Im (lweight ~ age + Ipsa + Ibph + gleason, data = PSAProstateCancer_df)



* Interpretation:

« The intercept (a) is the average value of the response when all the predictors have
values equal to zero.

 |f a predictoris continuous, it's slope (b) indicates the average change in the response
when all the other predictors are held constant.

 |f a predictor is binary the slope (b) represents the average difference in the response
between the groups when all other predictors are held constant.

« In multivariable the adjusted R? is employed to assess the fit of the model.
« The adjusted R? takes account of the number of predictors used in the model.

* [ts interpretation is the same as for R-squared.



Example — Multiple Linear Regression

> # Multiple Linear Regression
> model <- Im{lweight ~ age + lpsa + lbph + gleason, data = PSAProstateCancer_df)
> summary (model)

Call:
Im(formula = lweight ~ age + lpsa + lbph + gleason, data = PSAProstateCancer_df)

Residuals:
Min 10 Median 30 Max
-1.85232 -0.22186 ©.03222 6.20483 1.008815

Coefficients:
Estimate Std. Error t value Pr(>|t])

(Intercept) _3,144840  ©0.415853 7.562 2.90e-11 ***
age 0.012609 | 0.005233  2.410] 0.017957 :?KJ
1psa 0.150646  ©.033300 4.524 T.81e-05

1bph 0.090422 0.026213  3.449 0.000849 ***
gleason -0.104202 ©.054008 -1.929 0.056767 .

Signif. codes: @ “**%) g @Bl **’ .81 **’ 0.05 .7 6.1 ' 1

Residual standard error: ©.3453
Multiple R-sqguared: @.3776, Adjusted R-squared: ©.3505
F-statistic: 13.95 on 4 and 92 DF, p-value: 6.196e-09




Logistic Regression

« Logistic regression is similar to linear regression

» Used to predict a binary outcome of interest

« Simple logistic regression — One predictor

« Multiple logistic regression — Several predictors

Example in R

model—gim (y ~ x1 + x2, data = data, family = binomial)

model «—glm (lweight ~ age + sex, data = Melanoma_df, , family = binomial)



Example in R

Melanoma_df Survival from Malignant Melanoma

Description

This dataset, Melanoma_df, is a data frame containing information about 205 patients with malig-
nant melanoma (a type of skin cancer) who underwent a radical operation at Odense University
Hospital, Denmark, between 1962 and 1977. Patients were followed up until the end of 1977.
By that time, 134 patients were still alive, and 71 had died (57 due to cancer and 14 from other
causes). This dataset provides detailed clinical and demographic information for studying malig-
nant melanoma outcomes.

Usage

data(Melanoma_df)

Format
A data frame with 205 observations and 7 variables:

time Follow-up time in days (integer).
status Patient’s status at the end of the study: 1 = alive, 2 = dead from cancer, 3 = dead from other
causes (integer).

sex Sex of the patient: 1 = male, 2 = female (integer).
age Age of the patient at the time of surgery (integer).
year Year of surgery (integer).

thickness Tumor thickness in millimeters (numeric).

ulcer Presence of ulceration: | =no, 2 = yes (integer).



#1. Simple logistic regression
model <- glm(ulcer ~ age, data = Melanoma_df, family = binomial)
summary (model)

exp(coef(model)) ) _ i
> #1. Simple logistic regression

> model <- glm(ulcer ~ age, data = Melanoma_df, family = binomial)
> summary (model)

Call:
glm(formula = ulcer ~ age, family = binomial, data = Melanoma_ df)

Coefficients:

Estimate Std. Error z value Pr(>|z]|)
(Intercept) -1.066856 B.482628 -2.211 0.0271 *
age ©.015578 0.008696 1.792 ©.8732 .

Signif. codes: @ “***! @ @1 “**! p.o1 *** 6.05 . 0.1 ' 1
(Dispersion parameter for binomial family taken to be 1)

Null deviance: 281.13 on 20804 degrees of freedom
Residual deviance: 277.84 on 283 degrees of freedom
ATC: 281.84

Mumber of Fisher Scoring iterations: 4
> exp(coef(model))

(Intercept) age
©.3440885 1.8157864



#2. Multiple logistic regression

model <- glm(ulcer ~ age + sex, data = Melanoma_df, family = binomial)
summary (model)

# 0Odds Ratio

exp ( coef (model)) > #2. Multiple logistic regression

> model <- glm(ulcer ~ age + sex, data = Melanoma_df, family = binomial)
> summary(model)

Call:
glm(formula = ulcer ~ age + sex, family = binomial, data = Melanoma df)

Coefficients:

Estimate Std. Error z value Pr(>|z]|)
(Intercept) -1.27759 8.49821 -2.564 @.0103 *
age 8.e1457 B.80820 1.655 B.0978 .
sex B.67257 8.29375 2.290 0.0220 *

Signif. codes: @ ©¥*%2 g @1 ***' g. 91 *! B.05 . .1 * ' 1
(Dispersion parameter for binomial family taken to be 1)

Null deviance: 281.13 on 2084 degrees of freedom
Residual deviance: 272.55 on 2082 degrees of freedom
ATC: 278.55

Number of Fisher Scoring iterations: 4

> # 0dds Ratio

> exp(coef(model))

(Intercept) age sex
B.2787892 1.8146744 1.9592614






Select all of the following statements which you believe to be true.

Q1. The Pearson correlation coefficient between two variables, x and y:

A. Is always positive.

&

Is dimensionless.

. Takes the same value when the variables x and y are interchanged.

o 0O

Takes the value zero when there is no linear association between the two variables x and vy.

m

Takes the value + 1 when one variable increases as the other variable decreases in value,
and it is possible to draw a straight line on the scatter diagram with all the points lying on it.



Q2. Interpretation of Pearson's correlation coefficient

The estimated Pearson correlation coefficient between systolic blood pressure (mmHg) and age

(years) in a sample of 30 middle-aged women from a given community was r = 0.72 (P <0.001).
Hence r2 = 0.52.

A. There is substantial evidence that systolic blood pressure and age in these women are
linearly related.

B. 72% of the variability of systolic blood pressure in these women can be explained by its
linear relationship with age.

C. 48% of the variability of systolic blood pressure in these women is unexplained by its linear
relationship with age.

D. We can conclude that increasing age is a cause of rising systolic blood pressure in these
women.

E. The null hypothesis that has been tested is that there is no association between systolic
blood pressure and age in these women.



Q3. Spearman'’s correlation coefficient

50 subjects with alcoholic cirrhosis underwent an interview to assess the reliability and validity of historical variables
such as duration of sobriety, duration and quantity of drinking and treatment history on the assessment of an
individual's alcohol history. In addition, an alternative source close to each subject, usually a spouse, was
interviewed by a second interviewer, who was blind to the subject's alcoholism history.

Duration of sobriety correlated highly between subject and the alternative source (Spearman'sr=0.96, P =0.0001)
as did the individual's score on the High-risk Alcoholism Relapse Scale (HRAR, Spearman’sr=0.72, P = 0.0001).

A. Spearman's correlation coefficient was used for these data because both variables were Normally distributed.

B. We can conclude that there is a linear relationship between the duration of sobriety as assessed by the
subject and their collateral source.

C. If the authors had taken a larger sample size, they would have been able to calculate the Pearson's
correlation coefficient for these data.

D. Spearman's correlation has provided a measure of association between the HRAR scores as assessed by the
subject and their collateral source.

E. We can conclude that 92.2% (=0.96 x 0.96) of the variability in the duration of sobriety as assessed by the
subject can be 'explained’ by the variability in the duration of sobriety as assessed by their collateral sources.



Q4. The slope of the linear regression line between an explanatory variable, x,
and a dependent variable, vy, is:

A. The same as the gradient of the line.

&

The value of Y when x =0, where Y is the predicted value of vy.

. The average change in Y for a unit increase in x.

o 0O

Always positive.

m

Often called the regression coefficient.
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« Examples: OneDataSets package in R
https://cran.r-project.org/web/packages/OncoDataSets/OncoDataSets.pdf
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